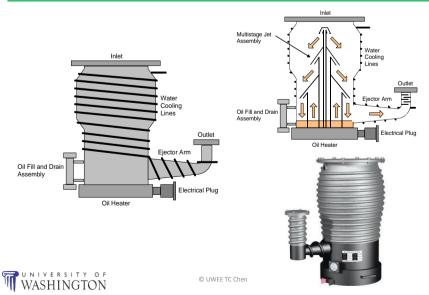

EE 527 MICROFABRICATION

Lecture 27 Tai-Chang Chen University of Washington

SORPTION PUMPS - 1



- Gases are pumped by
 - Cryocondensation: gases freeze into solid phase on cold surfaces
 - Cryosorption: gases are trapped in a porous molecular sieve
- The vessel is cooled by immersion in liquid nitrogen (LN₂) which reaches -196° C, or 77° K.
- Pumping is completely oil free and has no moving parts.
- Each sorption pump requires about 2-3 gallons of LN₂ and about 20 minutes to cool down.
- Several sorption pumps are often combined on a manifold.
- Pumps must be regenerated by heating to 250° C for 30 mins. to melt frost and degas the molecular sieve material.

© UWEE TC Chen

Winter 2014

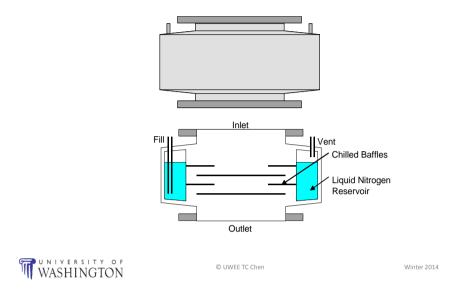
DIFFUSION PUMPS - 1

DIFFUSION PUMPS - 2

- Oil is vaporized and propelled downward by an internal boiler and multistage jet assembly.
- Oil vapor reaches speeds of 750 mph or more (supersonic).
- Oil vapor streams trap and compress gases into bottom of pump, which are then ejected out into the foreline arm.
- Oil vapor is condensed on sides of pump body which are water cooled.
- Can only operate at foreline pressures of ~100 millitorr or less.
- A mechanical foreline pump is required for operation.
- Very high reliability pumps, since there are no moving parts.
- Gravity collects oil in the base, so pumps must be mounted pointing upwards.

© UWEE TC Chen

Winter 2014

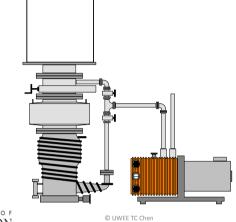

DIFFUSION PUMPS - 3

- Potential Problems:
 - Backstreaming of oil vapor can occur if forepressure becomes too large.
 - Backstreaming occurs for pressures of 1 to 10 mTorr.
 - A liquid nitrogen filled cryotrap also helps to reduce this.
 - The maximum tolerable foreline pressure (critical fore pressure) must not be exceeded, or pump will "dump" or "blow-out", sending oil up into the chamber.
 - Pump can overheat if cooling water fails
 - Most pumps have a thermal cutout switch.
 - Pumping requires low vapor pressure oil
 - Water, dirt, or other impurities will raise vapor pressure.
 - Only special oils are suitable for diffusion pump use.

© UWEE TC Chen

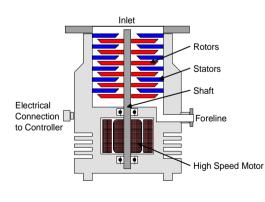
LIQUID NITROGEN TRAPS / BAFFLES - 1

LIQUID NITROGEN TRAPS / BAFFLES - 2


- Baffles and traps in the pumping lines can greatly help to reduce backstreaming:
- LN₂ cryotraps should not experience air pressure above 100 millitorr, or they will frost completely over.
- Residual water in a cryotrap can be frozen and cause trap to break, causing catastrophic failure of vacuum system.
 - Blow out any water vapor with dry N₂ before filling with LN₂.
- LN₂ cryotraps require constant refilling.
 - Expensive, but autofill valves are available.

© UWEE TC Chen

44


DIFFUSION PUMPED HIGH VACUUM BELL JAR SYSTEM

WASHINGTON

Winter 2014

TURBOMOLECULAR PUMPS - 1

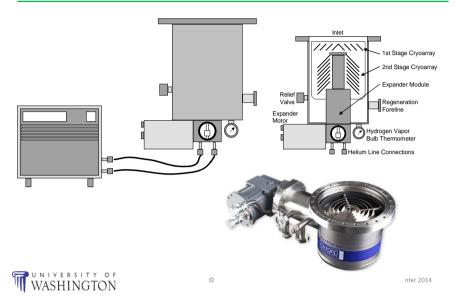
© UWEE TC Chen

TURBOMOLECULAR PUMPS - 2

- These are very clean mechanical compression pumps.
- They use high speed rotational blades to impart velocity and direction to gas molecules.
- They operate ONLY at mid- to high-vacuum pressures.
- Typical motor speeds are 9,000 to 90,000 rpm!
- Similar to a diffusion pump, each requires a constantly running mechanical foreline pump.
- They are ideal for hydrocarbon free applications.
- The base pressure is usually limited by H₂.

© UWEE TC Chen

Winter 2014


TURBOMOLECULAR PUMPS - 3

- Potential Problems:
 - Very high speed rotor blades have close-mating stator blades.
 - Slight imbalances can cause vibration and bearing wear problems.
 - A sudden blast of atmospheric pressure can bend the blades down, causing catastrophic failure, "crashing the pump."
 - Lubrication of the high speed rotor is an engineering problem.
 - Circulating oil is most reliable, but pump must be right-side-up.
 - Grease-lubricated bearings are less reliable, but allow pump to be placed at any orientation.
 - A mechanical foreline pump must be used

© UWEE TC Chen

CRYOPUMPS - 1

CRYOPUMPS -2

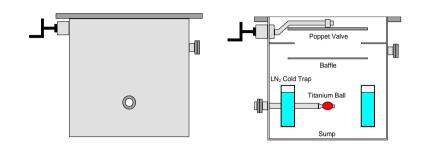
- These use a closed-loop helium cryogenic refrigerator.
- The primary parts are:
 - Compressor: uses He for its high heat capacity.
 - Expander: uses Joule-Thompson expansion of He gas for cooling
 - Cold Head: thermally insulated from pump bucket, 2+ stages
- Gases are pumped by two processes:
 - Cryocondensation (H₂O, CO₂, N₂, O₂, Ar, solvent vapors)
 - Gases are condensed into a solid phase on cryogenically cooled surfaces. (They become frost!)
 - Cryosorption (H₂, He, Ne)
 - Non-condensable gases are adsorbed onto surfaces of cryogenically cooled porous media, usually activated charcoal or zeolites.

© UWEE TC Chen

CRYOPUMPS - 3

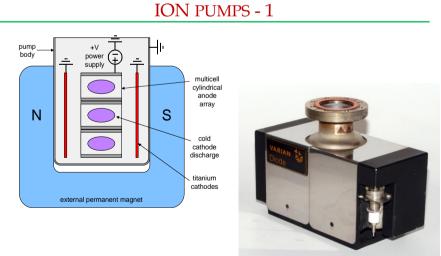
- The first stage array operates at 50 to 80 K.
 - Primarily used for pumping water vapor and carbon dioxide.
- The second stage array operates at 10 to 20 K.
 - Primarily used for pumping other condensable gases.
- Activated charcoal in the second stage provides cryosorption.
 - Primarily used for pumping other non-condensable gases.
 - Charcoal and zeolites have about 8000 ft²/cm³ of surface area.
- They offer completely oil free operation.
- They can operate from any orientation.
- They offer very clean vacuum with high pumping speed.

© UWEE TC Chen


Winter 2014

CRYOPUMPS - 4

- Potential Problems:
 - They must be regenerated to extract the trapped gases.
 - Allow to warm to room temperature (slow), or
 - Use a built-in heater to warm to 250 C and outgas (fast).
 - Regeneration takes the pump off-line for several hours.
 - They must be started from below 100 millitorr.
 - They require the use a mechanical roughing pump to initially pump out the bucket, but once done, the rough pump is no longer needed.


© UWEE TC Chen

WASHINGTON

© UWEE TC Chen

Winter 2014

Diode Ion Pump

© UWEE TC Chen

SPECIAL CONSIDERATIONS FOR ULTRA-HIGH VACUUM SYSTEMS

- Achieving pressures below ~10⁻⁷ torr requires:
 - Extreme attention to the cleanliness of all surfaces
 - Elimination of all virtual leaks
 - Baking out of chamber to allow inside wall surfaces to desorb
 - Usually ~200-300°C for 6-12 hours
 - Special baking blankets or heater tapes are used on the exterior of the chamber
 - Patience to achieve the base pressures
 - Can sometimes take >24 hours
 - UHV systems often have a load-lock system so that the main chamber does not need to come up to full atmospheric pressure to load and unload samples

© UWEE TC Chen